Analysis of microseismicity induced by hydraulic fracture stimulation in the Marcellus Shale shows changes in stress state for different zones of failure. During the treatment, shear failure occurs on both the J1 and J2 fracture orientations in response to different maximum stress orientations, indicating localized changes in the orientation during the treatment. Reactivation of a fault near the wellbore is associated with failure mechanisms with a higher volumetric component, indicating possible inflation of faults and fractures by the introduction of the slurry. Quantification of the stress conditions that are associated with inflation could potentially be used to optimize the stimulation by identifying which fractures will preferentially take on slurry volume.
Analysis of microseismicity induced by hydraulic fracture stimulation in the Marcellus Shale shows changes in stress state for different zones of failure. During the treatment, shear failure occurs on both the J1 and J2 fracture orientations in response to different maximum stress orientations, indicating localized changes in the orientation during the treatment. Reactivation of a fault near the wellbore is associated with failure mechanisms with a higher volumetric component, indicating possible inflation of faults and fractures by the introduction of the slurry. Quantification of the stress conditions that are associated with inflation could potentially be used to optimize the stimulation by identifying which fractures will preferentially take on slurry volume.